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Facile synthesis of 6-iodo-2,2'-dipivaloyloxy-1,1’-binaphthyl, a key
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A high-yielding procedure for selective monoiodination of 2,2’-dihydroxy-1,1’-binaphthyl (BINOL) is
reported. 6-lodo-2,2'-dipivaloyloxy-1,1’-binaphthyl, obtained in three steps starting from BINOL in 88%
overall yield, proved to be a highly efficient substrate in various palladium-catalyzed coupling (Stille,
Heck, Sonogashira, and Suzuki coupling) and carbonylation reactions compared to the analogous 6-
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Optically active 2,2’-dihydroxy-1,1’-binaphthyl (BINOL) and its
derivatives have attracted significant interest due to their applica-
tion as ligands in enantioselective catalytic reactions.! The main
drawback of these homogeneous catalytic systems is in the difficulty
of recovery and recycling of the expensive chiral catalysts. Accord-
ingly, several creative synthetic strategies toward polymer-, dendri-
mer-, and silica-supported BINOL-type ligands were developed.?
Many of these use an halogenated BINOL derivative as the starting
material®>~® and often incorporate a palladium-catalyzed coupling
reaction of such compounds as the key step.”"'° According to the lit-
erature, BINOL and its derivatives can be halogenated selectively at
the6,6'-,' 3,3'-,'2and 5,5'- 13 positions. However, there are fewer re-
ports on selective monohalogenation of similar compounds. 6-
Mono-bromo-BINOL derivatives were synthesized via direct bro-
mination of BINOL®> or 2,2-diethoxy-1,1’-binaphthalene,'* and,
more efficiently, through mono-ester formation between BINOL
and pivaloyl chloride followed by bromination.”"!> At the same time,
palladium-catalyzed coupling reactions of the bromo derivatives
can be carried out efficiently usually only under harsh reaction con-
ditions. As an example, Heck reaction of 6-bromo-2-hydroxy-2’-
pivaloyloxy-1,1’-binaphthyl and butyl acrylate afforded the cou-
pling product in 87% yield in the presence of the Pd(OAc),—(0-Tol)sP
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catalytic system after heating for 36 h at 130 °C.” In spite of this, re-
ports on the synthesis of the potentially more reactive monoiodo
derivatives are scarce. A 3-iodo derivative was prepared in 44% over-
all yield starting from BINOL via de-iodination of an intermediate
3,3'-diiodo-2,2’-dimethoxy-1,1’-binaphthalene.® Another approach
involves halogen-lithium, lithium-halogen exchange of a 6’-substi-
tuted 6-monobromo compound.!®

As part of our ongoing research on palladium-catalyzed reactions
of aryl/alkenyl halides,!” the functionalization of 6-bromo-2-hydro-
xy-2'-pivaloyloxy-1,1’-binaphthyl’ via aminocarbonylation was at-
tempted. As we observed a sluggish reaction, we decided to explore
the possibility of selective monoiodination of the binaphthyl core in
order to obtain a more reactive substrate.

Recently, several direct iodinations of activated aromatic com-
pounds were reported in the presence of a wide variety of reagents,
such as NalO,4/KI/NaCl,'® NaClO,/Nal/HCl,'® KI05/KI/HCL,*® Py.IC],?!
and IPy,BF,.22 All of these reagents gave unsatisfactory results in
the iodination of either BINOL (1) or 2-hydroxy-2’-pivaloyloxy-
1,1’-binaphthyl (2). Interestingly, the solid-phase reaction of 2 with
AgNOs/I,,2> which had been reported to be a very effective method
for the iodination of both activated and deactivated aromatic com-
pounds, led to the selective formation of the 6-nitro derivative 3 in
ayield of 57% after optimization (Scheme 1).24 The presence of iodo
derivatives was not detected in the reaction mixture. The position of
the nitro group was proved using 2D NMR techniques (H-'H COSY,
HSQC, and HMBC).
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Scheme 1. Synthesis of 6-monosubstituted BINOL derivatives 3-5.

Fortunately, iodination of 2 with Ag,S0,/1,%> gave a selective
reaction affording 4 in 95% yield (Scheme 1).2° The structure of 4
was proved by 2D NMR methods.

Electron-deficient aryl halides are usually more reactive sub-
strates in palladium-catalyzed coupling reactions because of the
more facile oxidative addition of these compounds to the nucleo-
philic Pd(0) complex. In order to obtain a substrate with high reac-
tivity, compound 4 was converted into the dipivaloyloxy derivative
527 using a standard procedure.?®

It should be mentioned that the attempted iodination of BINOL
(1) resulted in a complex mixture of several unidentified side prod-
ucts and no conversion of 2,2'-dipivaloyloxy-1,1’-binaphthyl was
observed under the same reaction conditions.

The reactivity of 5 was examined in various palladium-cata-
lyzed reactions (Scheme 2, Table 1). As a comparison, carbonyl-
ation/coupling reactions of 6-bromo-2,2’-dipivaloyloxy-1,1'-
binaphthyl (6), obtained by pivaloylation®®° of known 6-bromo-
2-hydroxy-2'-pivaloyloxy-1,1’-binaphthyl,” were carried out under
the same conditions. The reactions were followed by GC and the
formation of the products confirmed by GC-MS. The reactions
were completely selective in each case, besides the carbonyl-
ation/coupling products, no other derivatives were obtained. The
reaction conditions for the conversion of 5 were not optimized.

In the aminocarbonylation using morpholine as the nucleophilic
reagent, a marked difference in the reactivities of 5 (Table 1, entry
1) and 6 (entry 2) was observed. A poor conversion of 6 was ob-
tained even after 12 h. As expected, under carbonylation condi-
tions, the formation of 7a was accompanied by a double
carbonylation leading to ketoamide 7b, even at atmospheric CO
pressure, in both cases.'””

Compound 5 was also found to be a superior substrate in Heck
and Sonogashira reactions (entries 3-10). The reactivity difference
between 5 and 6 is especially evident when using less active re-
agents, such as 2-methyl-3-butyn-2-ol in the Sonogashira coupling
(entries 8-10).

Although Sonogashira and Stille reactions of 6 gave the ex-
pected products in reasonable to excellent yields, respectively (en-
tries 6 and 12), total conversion of the 6-iodo derivative 5 was
observed even upon reducing the reaction temperature (entries 7
and 13).

The only example where 5 and 6 gave identical results under
the conditions used was in the Suzuki coupling with PhB(OH), (en-
tries 15 and 16).

It should be mentioned that derivative 4 was found to be an al-
most equally reactive substrate in these couplings, but the forma-
tion of side products was observed. Clarification of the effect of
protecting groups on the reactivity of 6-halogeno-2,2’-dihydroxy-
1,1’-binaphthyl derivatives as well as exploration of the side reac-
tions observed in couplings of 4 is in progress.

In summary, 6-iodo-2,2’-dipivaloyloxy-1,1’-binaphthyl (5) was
synthesized in high yield starting from 2,2’-dihydroxy-1,1’-binaph-
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Scheme 2. Palladium-catalyzed reactions of 6-iodo-(5) and 6-bromo-(6) derivatives of BINOL.
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Table 1
Palladium-catalyzed coupling and carbonylation reactions of 5 and 6
Entry Products Substrate Temperature (°C) Time (h) Yield® (%)
1P 7a+7b 5 100 2 92 (7a/7b = 94/6)
20 7a+7b 6 100 2(12) 16 (23)" (7a/7b = 90/10)
3¢ 8 5 100 2 100
4¢ 8 6 100 2 21
54 9 5 60 2 100
64 9 6 60 2(8) 50 (81)"
7 9 5 rt 0.5 100
8¢ 10 5 100 2 100
9¢ 10 6 100 8 82
10¢ 10 6 120 8 96
11f 11 5 100 2 100
12f 11 6 100 2 (4) 60 (100) "
13f 11 5 60 2 100
14f 11 6 60 2 (6) 21 (31"
158 12 5 60 2 92
168 12 6 60 2 93

Determined by GC.

5 mol % Pd(OAc),, 10 mol % PPhs, substrate/methyl acrylate/EtsN = 1/2.5/2 in DMF.

a
> 5 mol % Pd(OAc),, 10 mol % PPhs, substrate/morpholine/Et;N = 1/5/2 in DMF under a CO atmosphere.
C
d

5 mol % PdCl,(PPhs),, 5 mol % Cul, substrate/phenylacetylene/Et3N = 1/2.5/2 in DMF.

€ 10 mol % PdCl,(PPhs),, 10 mol % Cul, substrate/2-methyl-3-butyn-2-ol/EtsN = 1/2.5/2 in DMF.

2 mol % Pd(PPhs)s, substrate/CH,=CHSnBus; = 1/1.1, in DMF.

& 5 mol % Pd(PPhs), substrate/ PhB(OH),/K,CO5 = 1/2/5 in THF/H,0 (1:1).
h

thyl. The method led to the product in three selective steps using
non-expensive reagents. Compound 5 was shown to be a highly
reactive substrate for palladium-catalyzed functionalization under
very mild reaction conditions.
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A mixture of I, (254 mg, 1 mmol) and Ag,SO, (170 mg, 1 mmol) in EtOH
(20 ml) was stirred until all the I, had dissolved. Then 2 (185 mg, 0.5 mmol)
was added and the mixture was stirred at room temperature for 12 h. After
filtration, EtOH was removed by distillation. The residue was dissolved in
CHCl; (50ml) and the solution was washed with saturated Na,S,03
(3 x 50 ml). The organic layer was separated and dried over Na,SO,. After
evaporation of the solvent, the product was purified by column
chromatography (silica, toluene) and was obtained in 95% yield. Selected
spectroscopic data for 4: '"H NMR (400 MHz, CDCl, 6): 8.18 (d, J = 1.8 Hz, 1H);
8.06 (d,J = 8.9 Hz, 1H); 7.96 (dd, J = 8.2 Hz, 1.2 Hz, 1H); 7.74 (d, ] = 8.9 Hz, 1H);
7.50 (ddd, J = 8.2 Hz, 6.8 Hz, 1.2 Hz, 1H); 7.44 (dd, J = 8.9 Hz, 1.8 Hz, 1H); 7.35
(ddd, J = 8.3 Hz, 6.8 Hz, 1.2 Hz, 1H); 7.35 (d, J = 8.9 Hz, 1H); 7.29 (d, J= 8.9 Hz,
1H); 7.23 (dd, J = 8.3 Hz, 1.2 Hz, 1H); 6.77 (d, ] = 8.9 Hz, 1H); 5.18 (br s, 1H);
0.79 (s, 9H). 3C NMR (100.62 MHz, CDCls, §): 177.8; 152.3; 148.3; 136.5;
135.0; 133.3; 132.5; 132.1; 131.0; 130.6; 129.2; 128.4; 127.6; 126.4; 126.3;
125.4; 122.2; 121.8; 119.2; 114.4; 88.5; 38.7; 26.5. MS (m/z (rel. int.)): 496
(M*)(13); 412(39); 284(11); 255(21); 239(24); 226(38); 57(100).

Selected spectroscopic data for 5: 'H NMR (400 MHz, CDCl;, 6): 8.28 (d,
J=1.7Hz, 1H); 7.95 (d, J = 8.9 Hz, 1H); 7.89 (dd, J = 8.1 Hz, 1.2 Hz, 1H); 7.82 (d,
J=8.9Hz, 1H); 7.51 (dd, J=8.9 Hz, 1.7 Hz, 1H); 7.44 (ddd, J = 8.1 Hz, 6.7 Hz,
1.2 Hz, 1H); 7.38 (d,J = 8.9 Hz, 1H); 7.35(d,] = 8.9 Hz, 1H); 7.30 (ddd, J = 8.4 Hz,
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28.

6.8 Hz, 1.2 Hz, 1H); 7.20 (dd, J = 8.4 Hz, 1.2 Hz, 1H); 7.01 (d, ] = 8.9 Hz, 1H); 0.75
(s, 9H); 0.72 (s, 9H). '*C NMR (100.62 MHz, CDCls, 8): 176.3; 176.2; 147.4;
147.0; 136.5; 135.1; 133.2; 132.9; 132.3; 131.4; 129.5; 128.1; 127.9; 127.8;
126.8; 125.8; 125.6; 124.0; 123.0; 122.9; 121.8; 91.3; 38.6; 26.4; 26.3. MS (m/z
(rel. int.)): 580 (M*)(10); 496(31); 412(83); 284(27); 255(38); 239(40);
226(54); 57(100).

6-lodo-2-hydroxy-2’-pivaloyloxy-1,1’-binaphthyl (4) or 6-bromo-2-hydroxy-
2’'-pivaloyloxy-1,1’-binaphthyl (3.5 mmol) and Et;N (7 mmol, 0.98 ml) were
dissolved in MeCN (25 ml) under argon. The solution was cooled to 0 °C and
pivaloyl chloride (5.25 mmol, 0.65 ml) was added dropwise. The solution was
stirred for 1 h at 0 °C and then for 4 h at room temperature. The solvent was
removed in vacuo and the residue was dissolved in CHCl3 (20 ml), washed with
5% HCI (2 x 20 ml), saturated NaHCO3; (20 ml), and brine (20 ml), and then

29.
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dried over Na,SO,. After evaporation of the solvent, the products 5 and 6 were
purified by column chromatography (silica, n-hexane/EtOAc=3/1) and
obtained in 96% and 97% yields, respectively.

Selected spectroscopic data for 6: 'H NMR (400 MHz, CDCls, 6): 8.00 (br s, 1H);
7.90 (d, J=8.9 Hz, 1H); 7.84 (d, J = 8.2 Hz, 1H); 7.80 (d, J = 8.9 Hz, 1H); 7.39 (t,
J=7.1Hz, 1H); 7.50 (d, J= 8.9 Hz, 1H); 7.28-7.32 (m, 2H); 7.24 (t, J=7.9 Hz,
1H); 7.16 (d, J= 8.9 Hz, 1H); 7.10 (d, J = 8.9 Hz, 1H); 0.70 (s, 9H); 0.67 (s, 9H).
13C NMR (100.62 MHz, CDCls, 8): 176.3; 176.2; 147.3; 147.0; 133.3; 132.5;
132.0; 131.5; 130.0; 129.9; 129.5; 128.3; 128.0 (2C); 126.8; 125.8; 125.7;
124.1;123.2; 123.0; 121.9; 119.8; 38.7; 26.4; 26.3. MS (m/z (rel. int.)): 532, 534
(M*)(7); 448, 450(30); 364, 366(89); 284(35); 255(38); 239(42); 226(64);
57(100).
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